Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of miRNAs in Two Wheat Cultivars Infected With Puccinia striiformis f. sp. tritici.

Identifieur interne : 000135 ( Main/Exploration ); précédent : 000134; suivant : 000136

Analysis of miRNAs in Two Wheat Cultivars Infected With Puccinia striiformis f. sp. tritici.

Auteurs : Sowmya R. Ramachandran [États-Unis] ; Nicholas A. Mueth [États-Unis] ; Ping Zheng [États-Unis] ; Scot H. Hulbert [États-Unis]

Source :

RBID : pubmed:31998329

Abstract

MicroRNAs are small RNAs that regulate gene expression in eukaryotes. In this study, we analyzed the small RNA profiles of two cultivars that exhibit different reactions to stripe rust infection: one susceptible, the other partially resistant. Using small RNA libraries prepared from the two wheat cultivars infected with stripe rust fungus (Puccinia striiformis f. sp. tritici), we identified 182 previously known miRNAs, 91 variants of known miRNAs, and 163 candidate novel wheat miRNAs. Known miRNA loci were usually copied in all three wheat sub-genomes, whereas novel miRNA loci were often specific to a single sub-genome. DESeq2 analysis of differentially expressed microRNAs revealed 23 miRNAs that exhibit cultivar-specific differences. TA078/miR399b showed cultivar-specific differential regulation in response to infection. Using different target prediction algorithms, 145 miRNAs were predicted to target wheat genes, while 69 miRNAs were predicted to target fungal genes. We also confirmed reciprocal expression of TA078/miR399b and tae-miR9664 and their target genes in different treatments, providing evidence for miRNA-mediated regulation during infection. Both known and novel miRNAs were predicted to target fungal genes, suggesting trans-kingdom regulation of gene expression. Overall, this study contributes to the current repository of wheat miRNAs and provides novel information on the yet-uncharacterized roles for miRNAs in the wheat-stripe rust pathosystem.

DOI: 10.3389/fpls.2019.01574
PubMed: 31998329
PubMed Central: PMC6965360


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of miRNAs in Two Wheat Cultivars Infected With
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
.</title>
<author>
<name sortKey="Ramachandran, Sowmya R" sort="Ramachandran, Sowmya R" uniqKey="Ramachandran S" first="Sowmya R" last="Ramachandran">Sowmya R. Ramachandran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mueth, Nicholas A" sort="Mueth, Nicholas A" uniqKey="Mueth N" first="Nicholas A" last="Mueth">Nicholas A. Mueth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Ping" sort="Zheng, Ping" uniqKey="Zheng P" first="Ping" last="Zheng">Ping Zheng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hulbert, Scot H" sort="Hulbert, Scot H" uniqKey="Hulbert S" first="Scot H" last="Hulbert">Scot H. Hulbert</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31998329</idno>
<idno type="pmid">31998329</idno>
<idno type="doi">10.3389/fpls.2019.01574</idno>
<idno type="pmc">PMC6965360</idno>
<idno type="wicri:Area/Main/Corpus">000040</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000040</idno>
<idno type="wicri:Area/Main/Curation">000040</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000040</idno>
<idno type="wicri:Area/Main/Exploration">000040</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of miRNAs in Two Wheat Cultivars Infected With
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
.</title>
<author>
<name sortKey="Ramachandran, Sowmya R" sort="Ramachandran, Sowmya R" uniqKey="Ramachandran S" first="Sowmya R" last="Ramachandran">Sowmya R. Ramachandran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mueth, Nicholas A" sort="Mueth, Nicholas A" uniqKey="Mueth N" first="Nicholas A" last="Mueth">Nicholas A. Mueth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Ping" sort="Zheng, Ping" uniqKey="Zheng P" first="Ping" last="Zheng">Ping Zheng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hulbert, Scot H" sort="Hulbert, Scot H" uniqKey="Hulbert S" first="Scot H" last="Hulbert">Scot H. Hulbert</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">MicroRNAs are small RNAs that regulate gene expression in eukaryotes. In this study, we analyzed the small RNA profiles of two cultivars that exhibit different reactions to stripe rust infection: one susceptible, the other partially resistant. Using small RNA libraries prepared from the two wheat cultivars infected with stripe rust fungus (
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
), we identified 182 previously known miRNAs, 91 variants of known miRNAs, and 163 candidate novel wheat miRNAs. Known miRNA loci were usually copied in all three wheat sub-genomes, whereas novel miRNA loci were often specific to a single sub-genome. DESeq2 analysis of differentially expressed microRNAs revealed 23 miRNAs that exhibit cultivar-specific differences. TA078/miR399b showed cultivar-specific differential regulation in response to infection. Using different target prediction algorithms, 145 miRNAs were predicted to target wheat genes, while 69 miRNAs were predicted to target fungal genes. We also confirmed reciprocal expression of TA078/miR399b and tae-miR9664 and their target genes in different treatments, providing evidence for miRNA-mediated regulation during infection. Both known and novel miRNAs were predicted to target fungal genes, suggesting trans-kingdom regulation of gene expression. Overall, this study contributes to the current repository of wheat miRNAs and provides novel information on the yet-uncharacterized roles for miRNAs in the wheat-stripe rust pathosystem.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31998329</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of miRNAs in Two Wheat Cultivars Infected With
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1574</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01574</ELocationID>
<Abstract>
<AbstractText>MicroRNAs are small RNAs that regulate gene expression in eukaryotes. In this study, we analyzed the small RNA profiles of two cultivars that exhibit different reactions to stripe rust infection: one susceptible, the other partially resistant. Using small RNA libraries prepared from the two wheat cultivars infected with stripe rust fungus (
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
), we identified 182 previously known miRNAs, 91 variants of known miRNAs, and 163 candidate novel wheat miRNAs. Known miRNA loci were usually copied in all three wheat sub-genomes, whereas novel miRNA loci were often specific to a single sub-genome. DESeq2 analysis of differentially expressed microRNAs revealed 23 miRNAs that exhibit cultivar-specific differences. TA078/miR399b showed cultivar-specific differential regulation in response to infection. Using different target prediction algorithms, 145 miRNAs were predicted to target wheat genes, while 69 miRNAs were predicted to target fungal genes. We also confirmed reciprocal expression of TA078/miR399b and tae-miR9664 and their target genes in different treatments, providing evidence for miRNA-mediated regulation during infection. Both known and novel miRNAs were predicted to target fungal genes, suggesting trans-kingdom regulation of gene expression. Overall, this study contributes to the current repository of wheat miRNAs and provides novel information on the yet-uncharacterized roles for miRNAs in the wheat-stripe rust pathosystem.</AbstractText>
<CopyrightInformation>Copyright © 2020 Ramachandran, Mueth, Zheng and Hulbert.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ramachandran</LastName>
<ForeName>Sowmya R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mueth</LastName>
<ForeName>Nicholas A</ForeName>
<Initials>NA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hulbert</LastName>
<ForeName>Scot H</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Puccinia striiformis</Keyword>
<Keyword MajorTopicYN="N">cultivar-specific resistance</Keyword>
<Keyword MajorTopicYN="N">microRNA</Keyword>
<Keyword MajorTopicYN="N">stripe rust</Keyword>
<Keyword MajorTopicYN="N">wheat (Triticum aestivum)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31998329</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01574</ArticleId>
<ArticleId IdType="pmc">PMC6965360</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant. 2013 Mar;6(2):301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2018 Apr;74(4):790-799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28967180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Sep 26;2(10):16153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27668926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2015 Sep;15(5):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26113396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 27;10(10):e0140675</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26506249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Aug 09;3:179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22908024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2015;12(8):847-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26083154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):988-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2017 Jan;245(1):161-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27699487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jun 24;10:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2016 Aug;56:190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 23;9(4):e95800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24759739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1790-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Feb 14;2(2):e219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17299599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Jun 10;12:307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Mar;11(3):204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20142834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Dec;240(6):1287-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25156489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Dec 10;15:1083</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25491154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2014 Apr;103(4):298-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24667243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2010;629:295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20387157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 01;10(10):e0139658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26426440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 27;8(8):e72840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24015279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Feb;164(2):1077-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24335508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:225-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Nov 22;15(22):2038-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16303564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Oct 13;12(10):e1005901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27737019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 22;6:555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26257760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Oct 16;10(10):e1004464</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25330340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Dec 10;16:273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26653535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Feb;23(2):431-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Aug;24(8):958-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21751852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Apr;203-204:17-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23415324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Sep 23;13:140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24060047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Sep;79(6):928-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24944042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jan 24;7:2058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28174574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2016 Apr;101:60-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26854408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Apr 16;15:289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24734873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Sep 21;16:718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26391470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Mar;170(3):1535-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26747286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Aug;237:24-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26089149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2009 Nov;9(4):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jul;67(2):218-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21457368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 May 22;14:142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Jan;75(1-2):93-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21153682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jun;147(2):732-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):859-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Sep 19;2:16151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27643635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(2):394-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23163405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2400-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23881411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Sep 15;27(18):2614-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21775303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Dec 1;25(23):2540-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Aug;83(3):451-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26042408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2010 Oct;21(8):798-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20359543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Oct;119(6):1119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19644666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 May 16;26(5):1878-1900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24838975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2013 Jul;254(1):265-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23772625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(6):R96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17543110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Apr;64(6):1521-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Oct;18(10):1602-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44968</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jun 30;6:469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26175740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Jul 10;13(7):e0200033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29990369</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Ramachandran, Sowmya R" sort="Ramachandran, Sowmya R" uniqKey="Ramachandran S" first="Sowmya R" last="Ramachandran">Sowmya R. Ramachandran</name>
</region>
<name sortKey="Hulbert, Scot H" sort="Hulbert, Scot H" uniqKey="Hulbert S" first="Scot H" last="Hulbert">Scot H. Hulbert</name>
<name sortKey="Mueth, Nicholas A" sort="Mueth, Nicholas A" uniqKey="Mueth N" first="Nicholas A" last="Mueth">Nicholas A. Mueth</name>
<name sortKey="Zheng, Ping" sort="Zheng, Ping" uniqKey="Zheng P" first="Ping" last="Zheng">Ping Zheng</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000135 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000135 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31998329
   |texte=   Analysis of miRNAs in Two Wheat Cultivars Infected With Puccinia striiformis f. sp. tritici.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31998329" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020